Pular para o conteúdo
Início » Revegetation in China’s Loess Plateau is approaching sustainable water resource

Revegetation in China’s Loess Plateau is approaching sustainable water resource

41558_2016_Article_BFnclimate3092_Fig1_HTML.jpg
  • Lal, R. Potential of desertification control to sequester carbon and mitigate the greenhouse effect. Climatic Change 51, 35–72 (2001).

    Article  Google Scholar 

  • Lal, R. Carbon sequestration in dryland ecosystems. Environ. Manage. 33, 528–544 (2003).

    Google Scholar 

  • Menz, M. H. M., Dixon, K. W. & Hobbs, R. J. Hurdles and opportunities for landscape-scale restoration. Science 339, 526–527 (2013).

    CAS  Article  Google Scholar 

  • Jackson, R. B. et al. Trading water for carbon with biological carbon sequestration. Science 310, 1944–1947 (2005).

    CAS  Article  Google Scholar 

  • Liu, J. G., Li, S. X., Ouyang, Z. Y., Tam, C. & Chen, X. D. Ecological and socioeconomic effects of China’s policies for ecosystem services. Proc. Natl Acad. Sci. USA 105, 9477–9482 (2008).

    CAS  Article  Google Scholar 

  • Ciais, P. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 6 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  • Quiggin, J. Environmental economics and the Murray–Darling River system. Aust. J. Agric. Resour. Econ. 45, 67–94 (2001).

    Article  Google Scholar 

  • Wang, S. et al. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nature Geosci. 9, 38–41 (2016).

    CAS  Article  Google Scholar 

  • Chen, Y. et al. Balancing green and grain trade. Nature Geosci. 8, 739–741 (2015).

    Article  Google Scholar 

  • Farley, K. A., Jobbágy, E. G. & Jackson, R. B. Effects of afforestation on water yield: a global synthesis with implications for policy. Glob. Change Biol. 11, 1565–1576 (2005).

    Article  Google Scholar 

  • Zhao, M. F., Xiang, W. H., Peng, C. H. & Tian, D. L. Simulating age-related changes in carbon storage and allocation in a Chinese fir plantation growing in southern China using the 3-PG model. Forest Ecol. Manag. 257, 1520–1531 (2009).

    Article  Google Scholar 

  • Croft, H., Chen, J. M. & Noland, T. L. Stand age effects on Boreal forest physiology using a long time-series of satellite data. Forest Ecol. Manag. 328, 202–208 (2014).

    Article  Google Scholar 

  • Gates, J., Scanlon, B., Mu, X. & Zhang, L. Impacts of soil conservation on groundwater recharge in the semi-arid Loess Plateau, China. Hydrogeol. J. 19, 865–875 (2011).

    Article  Google Scholar 

  • Xu, X. Z., Zhang, H. W. & Zhang, O. Development of check-dam systems in gullies on the Loess plateau, China. Environ. Sci. Policy 7, 79–86 (2004).

    Article  Google Scholar 

  • Zhang, X., Zhang, L., Zhao, J., Rustomji, P. & Hairsine, P. Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China. Wat. Resour. Res. 44, W00A07 (2008).

    Google Scholar 

  • Liang, W. et al. Quantifying the impacts of climate change and ecological restoration on streamflow changes based on a Budyko hydrological model in China’s Loess Plateau. Wat. Resour. Res. 51, 6500–6519 (2015).

    Article  Google Scholar 

  • Qian, Z. Y. & Zhang, G. D. Comprehensive Report on China’s Sustainable Water Resources Strategy [in Chinese] (China’s Water Conservancy and Hydropower Press, 2001).

    Google Scholar 

  • Drake, B. G., Gonzàlez-Meler, M. A. & Long, S. P. More efficient plants: a consequence of rising atmospheric CO2? Annu. Rev. Plant Biol. 48, 609–639 (1997).

    CAS  Article  Google Scholar 

  • Wullschleger, S. D., Tschaplinski, T. J. & Norby, R. J. Plant water relations at elevated CO2—implications for water-limited environments. Plant Cell Environ. 25, 319–331 (2002).

    Article  Google Scholar 

  • Donohue, R. J., Roderich, M. L., McVicar, T. R. & Farquhar, G. D. Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environment. Geophys. Res. Lett. 40, 3031–3035 (2013).

    CAS  Article  Google Scholar 

  • McVicar, T. R. et al. Development a decision support tool for China’s re-vegetation program: simulating regional impacts of afforestation on average annual streamflow in the Loess Plateau. Forest Ecol. Manag. 251, 65–81 (2007).

    Article  Google Scholar 

  • Mu, X. M., Zhang, L., McVicar, T. R., Chille, B. S. & Gao, P. Estimating the impact of conservation measures on stream-flow regime in catchments of the Loess Plateau. Hydrol. Process. 21, 2124–2134 (2007).

    Article  Google Scholar 

  • Rose, S. K. et al. Land-based mitigation in climate stabilization. Energy Econ. 34, 365–380 (2012).

    Article  Google Scholar 

  • McVicar, T. R. et al. Parsimoniously modeling perennial vegetation suitability and identifying priority areas to support China’s re-vegetation program in the Loess Plateau: matching model complexity to data availability. Forest Ecol. Manag. 259, 1277–1290 (2010).

    Article  Google Scholar 

  • Rodà, F., Retana, J., Gracia, C. A. & Bellot, J. Ecology of Mediterranean Evergreen Oak Forests (Springer, 1999).

    Book  Google Scholar 

  • Budyko, M. I. Climate and Life (Academic, 1974).

    Google Scholar 

  • Liu, Q. & McVicar, T. R. Assessing climate change induced modification of Penman potential evaporation and runoff sensitivity in a large water-limited basin. J. Hydrol. 464, 352–362 (2012).

    Article  Google Scholar 

  • McVicar, T. R. et al. Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences. J. Hydrol. 338, 196–220 (2007).

    Article  Google Scholar 

  • Zhao, X. et al. The Global Land Surface Satellite (GLASS) remote sensing data processing system and products. Remote Sens. 5, 2436–2450 (2013).

    Article  Google Scholar 

  • Feng, X. M., Fu, B. J., Lu, N., Zeng, Y. & Wu, B. F. How ecological restoration alters ecosystem services: an analysis of carbon sequestration in China’s Loess Plateau. Sci. Rep. 3, 2846 (2013).

    Article  Google Scholar 

  • Wu, B. F. et al. Validation of ETWatch using field measurements at diverse landscapes: a case study in Hai Basin of China. J. Hydrol. 436–437, 67–80 (2012).

    Article  Google Scholar 

  • Chen, X. D. Hydrology of Yellow River Basin [in Chinese] (Yellow River Water Conservancy Press, 1996).

    Google Scholar 

  • Chen, H. S., Shao, M. A. & Li, Y. Y. Soil desiccation in the Loess Plateau of China. Geoderma 143, 91–100 (2008).

    Article  Google Scholar 

  • Sitch, S. et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Change Biol. 9, 161–185 (2003).

    Article  Google Scholar 

  • Hickler, T. et al. Using a generalized vegetation model to simulate vegetation dynamics in northeastern USA. Ecology 85, 519–530 (2004).

    Article  Google Scholar 

  • Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cycles 19, GB1015 (2005).

    Article  Google Scholar 

  • Lawrence, D. M. et al. Parameterization improvements and functional and structural advances in version 4 of the community land model. J. Adv. Model. Earth Syst. 3, M03001 (2011).

    Google Scholar 

  • Tan, K. et al. Application of the ORCHIDEE global vegetation model to evaluate biomass and soil carbon stocks of Qinghai-Tibetan grasslands. Glob. Biogeochem. Cycles 24, GB1013 (2010).

    Article  Google Scholar 

  • Tao, F. & Zhang, Z. Dynamic responses of terrestrial ecosystems structure and function to climate change in China. J. Hydrometeorol. 12, 371–393 (2011).

    Article  Google Scholar 

  • Peng, S. Global Change Impacts on Forest Ecosystems in East Asia (Peking University, 2012).

    Google Scholar 

  • Peng, S. et al. Precipitation amount, seasonality and frequency regulate carbon cycling of a semi-arid grassland ecosystem in Inner Mongolia, China: a modeling analysis. Agric. For. Meteorol. 178, 46–55 (2013).

    Article  Google Scholar 

  • Piao, S. et al. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Glob. Change Biol. 19, 2117–2132 (2013).

    Article  Google Scholar 

  • Lucht, W. et al. Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science 296, 1687–1689 (2002).

    CAS  Article  Google Scholar 

  • Piao, S. et al. Effect of climate and CO2 changes on the greening of the Northern Hemisphere over the past two decades. Geophys. Res. Lett. 33, L23402 (2006).

    Article  Google Scholar 

  • Mao, J. et al. Global latitudinal-asymmetric vegetation growth trends and their driving mechanisms: 1982–2009. Remote Sens. 5, 1484–1497 (2013).

    Article  Google Scholar 

  • Piao, S. L. et al. Climate and land use changes have a larger direct impact than rising CO2 on global river runoff trends. Proc. Natl Acad. Sci. USA 104, 15242–15247 (2007).

    CAS  Article  Google Scholar 

  • Shi, X., Mao, J., Thornton, P. E., Hoffman, F. M. & Post, W. M. The impact of climate, CO2, nitrogen deposition and land use change on simulated contemporary global river flow. Geophys. Res. Lett. 38, L08704 (2011).

    Article  Google Scholar 

  • Piao, S. L. et al. Detection and attribution of vegetation greening trend in China over the last 30 years. Glob. Change Biol. 21, 1601–1609 (2015).

    Article  Google Scholar 

  • Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109, 213–241 (2011).

    CAS  Article  Google Scholar 

  • Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  • Fonte: